UNIVERSITY OF MICHIGAN-FLINT

SPILL PREVENTION CONTROL AND COUNTERMEASURE PLAN
AND
POLLUTION INCIDENT PREVENTION PLAN

Prepared by:
UM-Flint Environment, Health and Safety Department
801 Northbank Center, 432 N. Saginaw St.
Flint, MI 48502 (810) 766-6763

UM-Ann Arbor Occupational Safety and Environmental Health Department
1239 Kipke Dr
Ann Arbor, Michigan 48109, (734) 763-6973

Revised July 2014
Table of Contents

Acronyms and Abbreviations ... iii
SPCC Plan Requirements Reference .. iv
Distribution List .. v
Document Control and Revision History ... v

1.0 General Information .. 1-1
1.1 Facility Information ... 1-1
1.2 Management Approval .. 1-2
1.3 Engineer Certification ... 1-2
1.4 Substantial Harm Certification .. 1-3
1.5 Purpose of Plan .. 1-5
1.6 Implementation Plan ... 1-6
1.7 Plan Review and Revisions ... 1-6
1.8 Notifications Regarding PIPP .. 1-8

2.0 Facility Description .. 2-1
2.1 Facility Drainage ... 2-1
2.2 Oil Storage, Distribution and Use ... 2-2
 2.2.1 Oil Filled Operational Equipment .. 2-2
2.3 Polluting Material Storage, Distribution and Use 2-2
2.4 Best Management Practices for Polluting Materials in Portable Containers 2-4
2.5 Best Management Practices for Ethylene Glycol Systems 2-7
2.6 Spill History .. 2-9
2.7 Potential Releases and Prevention Controls 2-9
2.8 Loading and Unloading Operations .. 2-9

3.0 Spill Response Plan ... 3-1
3.1 General Initial Response Measures and Spill Reporting 3-1
3.2 Spill Notifications to Outside Entities ... 3-1
3.3 Remedial Action ... 3-1

4.0 Inspections, Tests, and Records ... 4-1
4.1 Inspections .. 4-1
4.2 Record Keeping ... 4-1
4.3 Integrity Testing ... 4-1

5.0 Personnel Training ... 5-1

6.0 Security ... 6-1

7.0 Facility Improvements ... 7-1
Table of Contents

FIGURES

1. Facility Relative to the Surrounding Area Map
2. Facility Map
3. South Riverfront Campus Map
4. North Riverfront Campus Map
5. Central Energy Plant – First Floor
6. Central Energy Plant – Basement

TABLES

1. Bulk Oil Storage Inventory
2. Polluting Material Storage Inventory Review of UMF Chemical Inventory

APPENDICES

A. Campus Emergency Response Plan (ERP)
B. SPCC/PIPP Inspection Guidelines
C. SPCC/PIPP Inspection Checklists
D. UM-Flint Annual SPCC Site Visit Inspection Checklist
E. SPCC/PIPP Training Records
F. Resources

- Environmental Update Training Materials
- OSEH SPCC Plan Fact Sheet
- SPCC Plan Secondary Containment and Catchment Guidance
- US EPA SPCC Regulation- A Facility Owner/Operator’s Guide to Oil Pollution Prevention
- MDEQ Part 5 Spillage of Oil and Polluting Materials
- MDEQ Pollution Incident Prevention Plan (PIPP) Informational Packet
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>Aboveground Storage Tank</td>
</tr>
<tr>
<td>CEP</td>
<td>Central Energy Plant</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DPS</td>
<td>Department of Public Safety</td>
</tr>
<tr>
<td>EHS</td>
<td>UM-Flint Environment, Health and Safety Department</td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>F&O</td>
<td>UM-Flint Facilities and Operations Department</td>
</tr>
<tr>
<td>HAZWOPER</td>
<td>Hazardous Waste Operations and Emergency Response</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
</tr>
<tr>
<td>LEPC</td>
<td>Local Emergency Planning Committee</td>
</tr>
<tr>
<td>MDEQ</td>
<td>Michigan Department of Environmental Quality</td>
</tr>
<tr>
<td>MSB</td>
<td>Murchie Science Building</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NBC</td>
<td>Northbank Center Building</td>
</tr>
<tr>
<td>OSEH</td>
<td>Occupational Safety and Environmental Health</td>
</tr>
<tr>
<td>PE</td>
<td>Professional Engineer</td>
</tr>
<tr>
<td>PIPP</td>
<td>Pollution Incident Prevention Plan</td>
</tr>
<tr>
<td>RA</td>
<td>Regional Administrator</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention, Control, and Countermeasure</td>
</tr>
<tr>
<td>UM-AA</td>
<td>University of Michigan-Ann Arbor</td>
</tr>
<tr>
<td>UM-Flint</td>
<td>University of Michigan-Flint</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UPAV</td>
<td>University Pavilion</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VCA</td>
<td>Vice Chancellor for Administration</td>
</tr>
<tr>
<td>WSW</td>
<td>William S. White Building</td>
</tr>
<tr>
<td>Applicable Regulatory Citation</td>
<td>Plan Requirement</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>112.3(d)</td>
<td>Plan review by P.E.</td>
</tr>
<tr>
<td>112.5(b)</td>
<td>Plan revision every 5 years</td>
</tr>
<tr>
<td>112.7</td>
<td>Management approval of plan</td>
</tr>
<tr>
<td>112.7(a)(3)</td>
<td>Facility Description, Physical layout with diagram marking the location of each container</td>
</tr>
<tr>
<td>112.7(a)(3)(i)</td>
<td>Type of oil and capacity</td>
</tr>
<tr>
<td>112.7(a)(3)(ii)</td>
<td>Discharge prevention measures including procedures</td>
</tr>
<tr>
<td>112.7(a)(3)(iii)</td>
<td>Discharge controls</td>
</tr>
<tr>
<td>112.7(a)(3)(iv)</td>
<td>Countermeasures for discharge discovery</td>
</tr>
<tr>
<td>112.7(a)(3)(v)</td>
<td>Methods of disposal of recovered materials</td>
</tr>
<tr>
<td>112.7(a)(3)(vi)</td>
<td>Contact list and phone numbers</td>
</tr>
<tr>
<td>112.7(a)(4)</td>
<td>Reporting procedures</td>
</tr>
<tr>
<td>112.7(a)(5)</td>
<td>Description of emergency procedures</td>
</tr>
<tr>
<td>112.7(b)</td>
<td>Description of reasonable potential for equipment failure. Include prediction of direction, flow rate, and quantity of oil that could be discharged.</td>
</tr>
<tr>
<td>112.7(c)(1)</td>
<td>Description of containment or diversionary structures.</td>
</tr>
<tr>
<td>112.7(e)</td>
<td>Inspections and records</td>
</tr>
<tr>
<td>112.7(f)</td>
<td>Training</td>
</tr>
<tr>
<td>112.7(g)</td>
<td>Security</td>
</tr>
<tr>
<td>112.7(h)</td>
<td>Facility tank truck loading and unloading</td>
</tr>
<tr>
<td>112.8(c)(1)</td>
<td>Use compatible containers</td>
</tr>
<tr>
<td>112.8(c)(2)</td>
<td>Construct bulk storage containers to provide secondary means of containment for the largest single container and sufficient freeboard</td>
</tr>
<tr>
<td>112.8(c)(4)</td>
<td>Protect any completely buried tanks</td>
</tr>
<tr>
<td>112.8(c)(6)</td>
<td>Test each AST for integrity on a regular schedule with both visual and another testing technique</td>
</tr>
<tr>
<td>112.8(c)(8)(i)-(v)</td>
<td>Engineer each container installation with good engineering practices</td>
</tr>
<tr>
<td>112.8(c)(10)</td>
<td>Promptly correct visible discharges</td>
</tr>
<tr>
<td>112.8(c)(11)</td>
<td>Position mobile storage containers to prevent discharge</td>
</tr>
<tr>
<td>112.8(d)(1)</td>
<td>Provide buried piping with protective wrapping and cathodically protect</td>
</tr>
<tr>
<td>112.8(d)(2)</td>
<td>Cap the terminal connection at the transfer point when piping is not in service</td>
</tr>
<tr>
<td>112.20(e)</td>
<td>Substantial harm certification</td>
</tr>
</tbody>
</table>

Distribution List
*Monthly inspection checklists and personnel training records are retained with the on-site plan in Appendixes B and C. Records of on-site visits to follow up on the checklists are retained in this copy only.

Document Control and Revision History

In June 2003, this document was completely revised to address the updated federal and state regulations (40 CFR 112 and Michigan Department of Environmental Quality (MDEQ) Part 5 Rules for the Spillage of Oil and Polluting Materials). In addition, as allowed by both the US Environmental Protection Agency (US EPA) and the MDEQ, the Spill Prevention, Control and Countermeasure Plan (SPCC) and Pollution Incident Prevention Plans (PIPP) have been integrated to create one cohesive document. Therefore, previous revision dates have been removed.

Initial Date: June 2003

By: Michael Lane, UM-Flint EHS

Revision Date: June 2005

By: Michael Lane, UM-Flint EHS

Revision Date: January 2006

By: Michael Lane, UM-Flint EHS

Revision Date: April 2006

By: Malama Chock, UM-AA OSEH

Revision Date: May 2007

By: Michael Lane, UM-Flint EHS

Revision Date: April 2009

By: Michael Lane, UM-Flint EHS, Brandi Campbell, UM-AA OSEH, and Jody Schaub, UM-AA OSEH

Revision Date: Nov 2010

By: Michael Lane, UM-Flint EHS

Revision Date: July 2014

By: Michael Lane, UM-Flint EHS, and Jody Schaub, UM-AA OSEH
1.0 General Information

1.1 Facility Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NAME OF FACILITY:</td>
<td>University of Michigan-Flint (UM-Flint)</td>
</tr>
<tr>
<td>2. FACILITY STREET ADDRESS</td>
<td>303 East Kearsley</td>
</tr>
<tr>
<td></td>
<td>Flint, Michigan 48502</td>
</tr>
<tr>
<td>3. FACILITY MAILING ADDRESS</td>
<td>University of Michigan-Flint EHS</td>
</tr>
<tr>
<td></td>
<td>204 University Pavilion</td>
</tr>
<tr>
<td></td>
<td>Flint, Michigan 48502</td>
</tr>
<tr>
<td>4. FACILITY PHONE NUMBER</td>
<td>(810) 766-6763 (8:00AM - 5:00PM)</td>
</tr>
<tr>
<td></td>
<td>(810) 762-3333 (24 hours - DPS)</td>
</tr>
<tr>
<td>5. NEAREST SURFACE WATER BODY/ DISTANCE</td>
<td>The Flint River is directly adjacent to the UM-Flint Campus. The river divides the Flint Campus into the North and South sides of campus.</td>
</tr>
</tbody>
</table>

The Facility Response Coordinator is responsible for the Spill Prevention Program including employee training and awareness and coordination with management. The Facility Response Coordinator is also responsible for coordinating and leading spill response, spill response training, management approvals, and necessary equipment, materials, and outside services.

Facility Response Coordinator:	Michael Lane
Working Hours Phone Number:	(810) 766-6763 (office)
After Hours Phone Number:	(810) 919-1709 (cell)

Second Alternate:	George Hakim
Working Hours Phone Number:	(810) 762-3223 (office)
After Hours Phone Number:	(810) 820-5155 (cell)

Third Alternate:	Tim Barden
Working Hours Phone Number:	(810) 762-3223 (office)
After Hours Phone Number:	(810) 515-4349 (cell)

Contact UM-Flint DPS at (810) 762-3333 in the unlikely event that you are unable to reach the Facility Response Coordinator or alternates.
1.2 Management Approval

I hereby certify that management of this facility extends its full approval of this SPCC/PIPP Plan and will commit the necessary resources for implementation.

Name: William Webb
Assistant Vice Chancellor for Business and Finance

Signature: ________________________________

Date: ________________________________

Name: George Hakim
Director, Facilities and Operations

Signature: ________________________________

Date: ________________________________

1.3 Engineer Certification

I hereby certify that I have visited and examined the facility and, being familiar with the provisions of 40 CFR Part 112 and this Plan, attest that this Plan has been prepared in accordance with good engineering practices and the regulations, and that it is adequate for the facility.

Certifying Engineer: Jody Lynn Schaub, PE

State: Michigan

Registration No.: A375157

Signature: ________________________________

Certification Date: ________________________________

Engineering Seal:
1.4 Substantial Harm Certification

40 CFR 112 APPENDIX C, ATTACHMENT C-II - CERTIFICATION OF THE APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA

Facility Name: University of Michigan-Flint
Facility Address: Flint, MI 48502

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?
 Yes ________ No _____X_____

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary contamination that is sufficiently large to contain the capacity of the largest above-ground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?
 Yes ________ No _____X_____

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III (to 40CFR112 Appendix C) or a comparable formula¹) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to US Department of Commerce (DOC)/National Oceanic and Atmospheric Administration’s (NOAA) “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see Appendix E, (to 40 CFR Part 112) section 10, for availability) and the applicable Area Contingency Plan.
 Yes ________ No _____X_____

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III (to 40 CFR 112) or a comparable formula¹) such that a discharge from the facility would shut down a public drinking water intake?²
 Yes ________ No _____X_____

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years?
 Yes ________ No _____X_____

¹ If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.

² For the purposes of 40 CFR part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).
Substantial Harm Certification
(Continued)

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

__
Signature

Michael Lane

Name (please type or print)

Director, Environment, Health, & Safety

Title

__
Date
1.5 Purpose of Plan

SPCC/ PIPP
This combined Spill Prevention Control and Countermeasure Plan and Pollution Incident Prevention Plan (SPCC/PIPP) provides guidelines for preventing the release of petroleum substances and polluting materials into the environment, especially to surface water. The SPCC/PIPP provides guidelines for inspections, preventive maintenance, commitment of resources, and emergency response procedures that will be implemented in the event of an oil product spill at the University of Michigan Flint Campus (UM-Flint).

This SPCC/PIPP has been prepared in accordance with United States Environmental Protection Agency (US EPA) 40 CFR Part 112 and Michigan Department of Environmental Quality (MDEQ) Part 5 Rules. In addition, this Plan creates mechanisms for responding to oil and chemical discharges. The aim is to minimize any impact to human health, the environment, and employee safety. The specific purpose of the SPCC and PIPP portions of the plan are outlined separately below.

SPCC
The US EPA has developed regulations (40 CFR 112) for the prevention of pollution of waters of the United States by oil from non-transportation related onshore and offshore facilities. Because the facility’s underground oil storage capacity is greater than 42,000 gallons, the facility is required to prepare and implement a SPCC Plan. The purpose of the SPCC Plan is to outline procedures to prevent the discharge of oil and oil products or hazardous substances into the environment, especially to surface water. SPCC regulations prohibit the discharge of oil when:

- It affects water quality.
- It causes a film, sheen, or discoloration of the water itself.
- It causes a film, sheen, or discoloration upon the water surface.
- It causes a film, sheen, or discoloration upon the adjoining shorelines.
- It causes a sludge or emulsion to be deposited beneath the surface of the water.
- It causes a sludge or emulsion to be deposited upon adjoining shorelines.

The SPCC Plan is not required to be filed with the US EPA, but a copy must be available for on-site review by the Regional Administrator (RA) during normal working hours. The SPCC Plan must be submitted to the US EPA Region 5 RA and the state agency along with the other information specified in Section 112.4(a) if either of the following occurs:

1. The facility discharges more than 1,000 gallons of oil into or upon the navigable waters of the United States or adjoining shorelines in a single spill event, or

2. The facility discharges oil in quantities greater than 42 gallons in each of two spill events within any twelve-month period.
PIPP

UM-Flint is also required to complete a PIPP as defined in the MDEQ Part 5 Spillage of Oil and Polluting Materials Rules (R 324.2001 through R 324.2009; henceforth referred to as “MDEQ Part 5 Rules”). MDEQ Part 5 Rules were developed to address release prevention planning, secondary containment, surveillance, and release reporting requirements of MDEQ-defined polluting materials. Because UM-Flint stores MDEQ-defined polluting materials in excess of the threshold management quantity, it is required to prepare and implement a PIPP. The MDEQ Part 5 threshold management quantity is defined as:

- Salt, in solid form, at any location in a quantity greater than 5 tons.
- Salt, in liquid form, at any location in a quantity greater than 1,000 gallons.
- Oil, stored aboveground in quantities greater than 1,320 gallons or in a single aboveground storage tank (AST) with a capacity greater than 660 gallons. Oil storage and use does not need to be addressed in a PIPP if a facility complies with 40 CFR 112.
- All other polluting materials at any discrete outdoor location in aggregate quantities greater than 440 pounds.
- All other polluting materials at any discrete indoor location in aggregate quantities greater than 2,200 pounds.

1.6 Implementation Plan

Provisions of this Plan required by 40 CFR 112 will be or were implemented by February 18, 2005. Provisions of this Plan required by MDEQ Part 5 Rules will be or were implemented by August 31, 2003. Training on implementation of the plan is provided to facility employees on an ongoing basis.

1.7 Plan Review and Revisions

The minimum review and revision requirements are listed below:

1. This Plan must be amended and recertified by a Professional Engineer (PE) within 6 months of a change in facility design, construction, operation, or maintenance that materially affects the facility’s potential for the discharge of oil or oil products into the environment.

2. Document reviews and updated PE Certifications for the record must be conducted at least once every 5 years and recorded in the SPCC/PIPP.
3. The Plan will be revised more often if:
 - The Plan fails in an emergency.
 - The Response Coordinator or alternate information changes.
 - Processes or procedures identified change.
 - The MDEQ determines the SPCC/PIPP is incomplete or inadequate.
 - There is a release that requires implementation of the SPCC/PIPP.
 - There is a release of greater than 1000 gallons in a single discharge
 - There are more than two releases of greater than 42 gallons of oil within any twelve-month period.

The SPCC/PIPP is available for review during normal business hours. When the SPCC/PIPP is updated, UM-Flint shall re-notify appointed agencies as detailed in Section 1.8.

1.8 Notifications Regarding PIPP

The MDEQ, Local Emergency Planning Committee (LEPC) and Local Health Departments have been notified that UM-Flint is in compliance with the MDEQ Part 5 Rules. Notifications were sent to the following:

Michigan Department of Environmental Quality
Lansing District Office (main telephone number) (517) 335-6010
Water Bureau District Supervisor – Tim Benton (517) 335-4523
525 W. Allegan (Constitution Hall)
4th Floor North
P.O. Box 30242
Lansing, Michigan 48909

Genesee County Local Emergency Planning Commission
Ms. Jennifer Boyer (810) 257-3064
1002 S. Saginaw Street
Flint, Michigan 48502

Genesee County Health Department
Floyd J. McCree Courts and Human Services Center (810) 257-3612
630 S. Saginaw St
Flint, Michigan 48502-1540

Burton Health Center (810) 742-2255
G-3373 S. Saginaw St,
Burton, Michigan 48529

If requested, within 30 days, UM-Flint will submit a copy of the SPCC/PIPP to the requesting agency.
If the MDEQ determines that the SPCC/PIPP is incomplete or inadequate, then the department may inform UM-Flint, in writing, of the MDEQ’s findings and recommendations and request modification of the Plan. UM-Flint shall modify the Plan and resubmit it to MDEQ within 30 days after receipt of the MDEQ’s request, unless a longer response period is authorized by the MDEQ in writing.
2.0 Facility Description

The University of Michigan-Flint is located at 303 East Kearsley Street Flint, Michigan. This institution is involved in higher education. It is in operation seven days a week. The student body is approximately 8,500 graduate and undergraduate students. Approximately 875 employees work at UM-Flint. The main campus is situated adjacent to both the Flint River and I-475, a major north-south expressway. UM-Flint also has property on the north side of the Flint River across from the main campus. In effect, the campus straddles the Flint River in Downtown Flint, Michigan. I-69 is a major east-west expressway about 1/2 mile south of the riverfront campus. Please refer to Figures 1 and 2 for reference of the facility site.

The Central Energy Plant (CEP) provides steam and hot water for the facility’s roughly 2,000,000 gross square feet of infrastructure. This CEP uses natural gas fired boilers to power the facility’s operations. Three (3) underground storage tanks (USTs) are located at the power plant. Each UST has a capacity to store 30,000 gallons of heating oil for backup energy generation purposes. Currently, all three tanks (Tanks 1, 2 and 3) are not being used and temporarily out of service, however, F&O continues to monitor the conditions of the tanks. In addition, there are emergency generator fuel tanks located throughout the university. The facility also has a vehicle maintenance area that provides limited maintenance for a small fleet of University vehicles and grounds keeping equipment.

As discussed in 40 CFR 112.1, USTs that are regulated by MDEQ (a State approved program under 40 CFR 281) are not discussed in this SPCC/PIPP. However, heating oil USTs are not regulated by MDEQ and are therefore discussed in this SPCC/PIPP. Both regulated and non-regulated USTs are shown on Figure 3. The attached campus maps identify the specific location of the UM-Flint buildings and their relative locations. They also identify the locations of natural features, structures, roads, parking areas and the various tanks used for material storage. Figures are provided for those buildings with polluting materials that exceed the threshold management quantity and the respective discrete locations.

In addition to this SPCC/PIP Plan, the University of Michigan – Flint is covered under the University of Michigan (U-M) NPDES, MS4 Jurisdictional General Permit (Permit No. MIS040090). The regional campuses (Dearborn and Flint) were added to the U-M NPDES permit as a condition of the coverage under MIS040090 and as a part of its updated Stormwater Management Program Plan (SWMPP) in May 2010.

2.1 Facility Drainage

Topography of the UM-Flint facility is generally level except for areas adjacent to the Flint River where the topography slopes toward the river. Onsite surface drainage generally flows into the onsite storm water sewer system. The facility storm water system discharges through a series of outfalls to the City of Flint storm water system, to the Flint River. Floor drains inside facility buildings discharge to the City of Flint sanitary sewer system.
The UST fill area associated with the CEP is located in an enclosed compound that can act as a catchment area after sealing the drain located in the compound. The catchment drain located in the immediate area where the fuel tanks are located is equipped with a closable ball-valve that would prevent any material from entering the storm sewer. When receiving fuel, the drain valve located in the compound is closed to protect against accidental discharge to the storm drain.

Drainage ways that may discharge offsite are monitored in accordance with the National Pollutant Discharge Elimination System (NPDES) and the facility’s Storm Water Pollution Prevention Plan (SWPPP). In addition, EHS maintains storm water and sanitary sewer maps of the UM-Flint campuses. These referenced documents and maps are available through UM Flint EHS.

2.2 Oil Storage, Distribution and Use

There are four underground storage tanks (USTs) and ten aboveground storage tanks (ASTs) at the facility. Three of these underground storage tanks are temporarily out of service. Waste oil from the vehicle maintenance area is stored in two 55 gallon drums located inside a completely closed/covered/locked container with secondary containment outside adjacent to the vehicle maintenance shop behind the Hubbard Building. In addition, 55-gallon drums of petroleum product may be stored throughout the campus (e.g. Hubbard Building, CEP). A summary of oil storage is attached as Table 1: Bulk Oil Storage Inventory. Interior petroleum product drum storage areas are located on secondary containment or are situated within the building such that the building provides secondary containment if a spill were to occur. All oil is stored in steel, fiberglass or compatible containers. Appropriate containment and/or diversionary structures or equipment are provided for the majority of bulk storage areas to prevent discharged oil from reaching navigable waters. Additional preventive measures to be performed at the facility are identified in Sections 2.4, 2.5, 2.6, 2.8 and 2.9 of this Plan. In addition, the facility has an effective facility-wide Emergency Response Plan (ERP) that is implemented for all chemical releases, including incidental releases and minor spills of oil. A copy of the ERP is included as Appendix A.

2.2.1 Oil Filled Operational Equipment

According to 40 CFR 112.7(k), if the facility meets the qualification criteria in paragraph (k)(l) of this subsection, the facility may choose to implement alternate requirements for qualified oil-filled operational equipment in lieu of general secondary containment required in paragraph (c) of that section. Oil filled operational equipment that are to be included under these requirements are hydraulic elevator reservoirs. Hydraulic elevator reservoirs are inspected at least quarterly as part of the UM-Flint’s agreement with the contracted Licensed Elevator Repair Service provider. If a leak is suspected or happened to occur in an elevator reservoir, Facilities & Operations would be notified by the contracted Licensed Elevator Repair Service provider immediately. The facility ERP incorporates the criteria for oil removal contingency plans specified in 40 CFR Part 109. In addition, as described in section
3.0 of this plan, the facility has resources to expeditiously control and remove any quantity of oil discharged that may be harmful.

2.3 Polluting Material Storage, Distribution and Use

Polluting materials, in excess of the threshold management quantity, are stored, distributed, and used at the CEP, Hubbard Compound, Murchie Science Building (MSB), Northbank Center (NBC), University Pavilion (UPAV), and William S. White Building (WSW). A list of the polluting materials, chemical abstract number, quantity, and the location of these materials are included as Table 2.

Safety Data Sheets (SDSs) for the CEP are stored in the office located on the first floor. SDSs for the Hubbard Compound are stored in the vehicle maintenance area within the Hubbard Building. SDSs for MSB, NBC, UPAV, and WSW as well as all other departments on campus are located within each department, usually in a supervisor’s office or common work area for easy employee access. Additionally, copies of the SDSs for all departments are on file and located in the EHS Department Office at 801 Northbank Center. Refer to the figures for further information.

Secondary containment for polluting materials is provided by buildings with the exception of the Magnesium Chloride deicing solution located outdoors at the Hubbard Compound. The Magnesium Chloride deicing solution located outdoors at the Hubbard Compound is located within a secondary containment system. Within the buildings, where floor drains are present near the polluting materials, drains have been covered or additional secondary containment has been provided through the use of spill pallets.

The secondary containment structure in the Hubbard Compound is constructed of concrete and the capacity is approximately 7,100 gallons (17.5 feet square with a wall height of 3.1 feet). Rainwater collected within the secondary containment is checked by visual observation and if clear, the rain water is allowed to evaporate or is discharged to the storm sewer. If the rain water contains any product, it is collected for proper disposal. The Hubbard Compound is secured with a fence that is kept locked when UM-Flint employees are not present. Appropriate containment and/or diversionary structures or equipment are provided for the storage areas to prevent discharged polluting materials from reaching navigable waters.
2.4 Best Management Practices for Polluting Materials in Portable Containers

UM-Flint has implemented the following best management practices for MDEQ Part 5 polluting materials stored within the buildings in portable containers (e.g., drums, totes). Designated personnel who work with the polluting materials should follow these best management practices to ensure proper handling.

Loading and Unloading Procedures
• The Operator is present to (1) receive drums and containers of polluting materials with capacities that are greater than 10 gallons or 100 pounds at the loading and unloading dock and (2) assure that the material container is in good condition.
• The Operator transfers the polluting material drums and containers to the designated storage location.

Storage
• Containers of polluting materials are stored closed when not in use and are properly labeled.
• The room in which polluting materials are stored will act as secondary containment in those areas where floor drains are not present.
• Containers of polluting materials stored in areas with floor drains or sumps are equipped with appropriately designed secondary containment to prevent polluting materials from entering a floor drain.
• The Operator regularly inspects the polluting material drums and containers for evidence of damage.
• In those buildings with sump pumps located in the basement, the sump pumps can be manually shutoff in the event of a spill.

Transfer
• The Operator is present during transfer of polluting materials.
• The Operator transfers the polluting material drums and containers to the designated storage location.

Spill Response
• The Operator is trained to detect any spilled material. If the Operator cannot clean up the spill, the Operator will call EHS at (810) 766-6763.
• If any spilled material enters a floor drain, the Operator will immediately contact DPS at (810) 762-3333 and EHS at (810) 766-6763 or (810) 919-1709.
• If this is beyond the Operators and EHS’s ability to clean up, EHS will contact an Environmental Contractor.
2.5 Best Management Practices for Ethylene Glycol Systems

UM-Flint has implemented the following best management practices for storage of ethylene glycol (an MDEQ Part 5 polluting material) within systems on campus. Ethylene glycol systems are used on campus in the heating, ventilation, and air-conditioning (HVAC) systems. Typically, ethylene glycol circulates throughout piping within buildings.

Designated personnel who work with the ethylene glycol should follow these best management practices to ensure proper handling.

Loading and Unloading Procedures
- The Plant Operations Air-Conditioning Operator is present to receive ethylene glycol at the loading and unloading dock and assure that the material container is in good condition.
- Ethylene glycol is only loaded or unloaded when needed.
- The Plant Operations Air-Conditioning Operator transfers or accompanies ethylene glycol containers to the designated storage location (typically a machine room).

Storage
- Ethylene glycol containers are stored in 55-gallons drums prior to use in heating HVAC systems, which can include energy recovery systems, chilled water systems, or hot water heating systems. All of these systems are closed-loop and are not open to the atmosphere.
- Containers of ethylene glycol are stored closed when not in use.
- The Plant Operations Air-Conditioning Operator regularly inspects the ethylene glycol containers for evidence of container damage.
- In those buildings with sump pumps located in the basement, the sump pumps can be electrically shutoff in the event of a spill.
- Energy recovery systems, chilled water systems, or hot water heating systems containing ethylene glycol have routine maintenance.
- If more than five 55-gallon containers of ethylene glycol are stored within a discrete area (as defined by Michigan Part 5 rules), an additional monthly inspection of the containers will be conducted for evidence of spills or leaks.

Transfer
- During routine use, ethylene glycol is only added to the systems and not removed.
- Typically, during routine use, less than two 55-gallon drums of ethylene glycol are added to each system at a time.
- The Plant Operations Air-Conditioning Operator is present during transfer of ethylene glycol.
- When ethylene glycol systems are maintained or reconditioned, the Plant Operations Air-Conditioning Operator containerizes the ethylene glycol.
Spill Response

- The Operator is trained to detect any spilled material. If the Operator cannot clean up the spill, the Operator will call EHS at (810) 766-6763.
- If any spilled material enters a floor drain, the Operator will immediately contact DPS at (810) 762-3333 and EHS at (810) 766-6763 or (810) 919-1709.
- If this is beyond the Operators and EHS’s ability to clean up, EHS will contact an Environmental Contractor.

2.6 Spill History

UM-Flint has had no federally reportable oil spills or SPCC spill events in the 12 months prior to the revised date of this Plan. In addition, there have been no oil spills in excess of 1,000 gallons or any two smaller spill events of oil or petroleum into a navigable waterway in the last 12 months.

On June 18, 2003, UM-Flint notified MDEQ that two unregulated USTs (Tanks 2 and 3) containing heating oil, did not pass their tank integrity testing. The USTs were located near the CEP. The remaining heating oil in Tanks 2 and 3 was transferred into Tank 1 (which passed the integrity testing) or was removed by increasing the rate of the heating oil consumed at the CEP. UM-Flint has since contracted a consultant to investigate the UST area, remove the tanks, remediate impacted soil/groundwater, and replace the tanks with three, 30,000 gallon, and double-walled fiberglass heating oil USTs with a continuous electronic monitoring system. The installation of the three 30,000 gallon double walled USTs was completed and operational by September 2006. These three tanks were emptied and have not been used since August, 2012, however, Facilities and Operations continues to monitor the condition of the tanks. The inspection and testing requirements of an EPA regulated tank are defined under 40 CFR Part 112.8(c)(6) for Bulk Storage Containers.

2.7 Potential Releases and Prevention Controls

New tank installations are fail-safe engineered to avoid spills. Consideration has been given to a variety of warnings and cut off devices during design and installation. Regulated facility UST systems meet the recent UST upgrade standards and are equipped with overfill protection, high liquid level alarms and/or automatic shutoff, leak detection, and or cathodic protection systems. Containment and diversionary structures for indoor AST and drummed oil storage areas typically consist of absorbent materials and diversions to spill collection sumps. All indoor AST areas are constructed so that secondary containment is provided for the entire contents of the largest single tank. The outdoor AST containing a deicing brine solution is located within a diked area preventing any accidental release from entering the sanitary or storm drain. The brine solution has a color/odor that aids in spill detection.
2.8 Loading and Unloading Operations

Catchment (containment for tank trucks) is used to prevent spills during loading and unloading operations. The catchment systems are specifically designed for each loading and unloading location. Operationally different types of catchment systems have been designed for each specific loading and unloading location. The size of the largest compartment in the tanker truck, area geography, size of storage tank, frequency of loading and unloading fuel, and location of the storm drains were all parameters that determined site-specific catchment design.

The different catchment systems used by Facilities and Operations include portable and fixed engineering control systems. The portable catchment systems include spill dikes, flexible berms and the insertion of storm drain mats/plugs used in conjunction with storm drain spill mats. This approach enables the UM-Flint to maintain a secondary containment system capable of containing the volume of the largest compartment within the tanker truck servicing the area, while ensuring two separate means of blocking the down-gradient storm drains.

The Department of Transportation (DOT) 49 CFR 177.834 Loading and Unloading regulatory requirements are followed by tank truck operators and include: not smoking and keeping any fire or other person smoking away from the loading or unloading operation, ensuring the handbrake is set and the wheels are blocked, ensure that the operator stays in attendance the entire time during the operation, ensure that all valves are secure and closed after the operation, ensure that all valves are inspected after closure for possible leaks and the operator must ensure that all flexible or fixed transfer lines are disconnected prior to departure.

To comply with the regulatory requirements of 49 CFR 177.834 a warning sign is posted at each location where fuel is being loaded or unloaded to prevent vehicular departure before complete disconnect of flexible or fixed transfer lines. Specific information on the signs comply with regulations specified in DOT 49 CFR Part 177.834 for Loading and Unloading. Each posted warning sign states:

- Ensure Catchment is in Place
- No Smoking
- Secure Vehicle with Parking Brake and Block Wheels
- Stay in Attendance During Loading or Unloading
- Close and Secure all Valves After Loading or Unloading
- Inspect all Valves for Leaking
- Disconnect all Flexible or Fixed Transfer Lines Prior to Departure

UM-Flint personnel at each location verify that these requirements are being followed by tank truck operators during fuel loading or unloading operations.
3.0 Spill Response Plan

3.1 General Initial Response Measures and Internal Spill Reporting

The UM-Flint has an effective Emergency Response Plan (ERP) that serves as a guidance document to assist University employees as well as outside responding agencies in dealing with emergency operations on the facility. A copy of the ERP can be referenced and downloaded from the UM-Flint EHS website: http://www.umflint.edu/ehs/emergency-preparedness-and-response. The facility ERP incorporates the majority of the criteria for oil removal contingency plans specified in 40 CFR Part 109 and addresses the information required by MDEQ Part 5 Rules. The ERP addresses emergency situations involving natural disasters, fires, explosions, chemical releases, and biological and radiological incidents. The plan covers incidental releases and minor spills of chemicals, including oil products.

The plan specifies emergency procedures, and describes the hierarchy of incident command. In addition, it also describes internal and external notifications, emergency response actions, and spill response actions.

To ensure that UM-Flint personnel are familiar with the ERP and how to approach incidents should they occur, approximately 10 UM-Flint personnel from several departments have completed 32 hour Hazardous Waste Operations and Emergency Response (HAZWOPER) Emergency Response Technician/Incident Command level training. Many other UM-Flint employees in Facilities and Operations, Public Safety, laboratory supervisors, EHS and others have completed Hazard Communication, Stormwater Management, HazMat Awareness, and HazMat Operations classes. These classes cover general hazard communication topics as well as incidental spills and emergency release procedures, the emergency response plan and important notification requirements for reporting an emergency. Additionally, select staff from the campus All Hazard Planning Team have completed Federal Emergency Management Agency (FEMA) Incident Command System (ICS) 100, 200, 300, 400 and 700 level training, or some combination of these classes. Other health and safety classes are offered routinely and incorporate emergency reporting and preparedness planning as well as protection of storm drains and spill response into the safety training class.

3.2 Spill Notifications to Outside Entities

The UM-Flint has an effective facility-wide ERP that is implemented for all chemical releases. Emergency spill notifications (e.g., fire and police departments) are contained within the ERP and additional response agencies’ contact information are contained within the table below. Notifications and follow-up reporting regarding reportable quantities of released material are conducted by the UM-Flint’s Director of EHS.
Emergency Response Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan Department of Environmental Quality</td>
<td>Oil and Hazardous Material control Section
Lansing, Michigan
Pollution Emergency Alert System (PEAS)</td>
</tr>
<tr>
<td>Emergency Response Division</td>
<td>Lansing, Michigan
24-Hour Telephone</td>
</tr>
<tr>
<td>MDEQ Lansing District Office (main telephone number)</td>
<td></td>
</tr>
<tr>
<td>MDEQ Water Bureau District Supervisor – Tim Benton</td>
<td></td>
</tr>
<tr>
<td>Michigan Department of Environmental Quality</td>
<td>Lansing District Office
525 W. Allegan (Constitution Hall), 4th Floor North
P.O. Box 30242, Lansing, Michigan 48909</td>
</tr>
<tr>
<td>National Response Center</td>
<td>Federal Emergency Response Center, Washington D.C.</td>
</tr>
<tr>
<td>24-Hour Telephone (Toll Free)</td>
<td></td>
</tr>
<tr>
<td>Genesee County Local Emergency Planning</td>
<td>Ms. Jennifer Boyer
Genesee County LEPC 1002 S Saginaw Flint MI 48502</td>
</tr>
<tr>
<td>Genesee County Health Department</td>
<td>Floyd J. McCree Courts & Human Services Center
630 S. Saginaw St, Suite 4, Flint, Michigan 48502-1540</td>
</tr>
<tr>
<td>Emergency Only Flint Fire and Police</td>
<td></td>
</tr>
<tr>
<td>Flint Fire Department</td>
<td></td>
</tr>
<tr>
<td>Flint Police Department</td>
<td></td>
</tr>
<tr>
<td>Flint Water Pollution Control</td>
<td>Emergency - 24-Hour</td>
</tr>
<tr>
<td>Spill Clean-Up Contractor</td>
<td>Marine Pollution Control
Youngs Environmental</td>
</tr>
<tr>
<td>US EPA Regional Administrator</td>
<td>Region V
77 West Jackson Boulevard
Chicago, Illinois 60604</td>
</tr>
</tbody>
</table>
3.3 Remedial Action

Because the nature and extent of potential spills can vary, the range of remedial actions will likewise vary. For small spills, leaks, or drips, the remedial action is as simple as removing the contaminated material (whether dirt, booms, or other adsorbents) and placing it in an approved container for subsequent treatment or disposal. A large spill, on the other hand, could result in an extensive clean-up of soil, groundwater, and surface water and may be beyond the immediately available facility resources. Licensed environmental remediation companies are under contract with the University to respond if a spill occurs that is beyond the scope of UM-Flint’s emergency response capabilities. The facility-wide ERP specifies procedures for post emergency actions such as clean-up and additional/follow-up notification.

The UM-Flint has HAZWOPER trained employees capable of responding to a variety of spill situations specified in the ERP including oil and polluting material products. Many of these trained individuals are available by cell phone 24-hours a day. If a spill is identified during normal or after normal hours of operation, University staff is instructed to contact DPS who in turn contact one of the trained employees to arrive on site, evaluate the spill incident and either clean up the spill or contact the University’s environmental remediation contractor to respond. Some circumstances might require the University’s environmental remediation contractor to be contacted immediately, prior to EHS arriving on site.
4.0 Inspections, Tests, and Records

An effective inspection (including necessary testing) and maintenance program is critical to preventing environmental incidents. Therefore, the main objectives of such a program should be to discover conditions that could cause breakdowns or failures that could affect the environment and to have a system to adjust, repair, or replace equipment.

4.1 Inspections

Inspections are performed on ASTs, USTs, Elevator Reservoirs and drum storage on a regular schedule. ASTs, USTs and Elevator Reservoirs are visually inspected on a quarterly basis, with one exception of the UST located at the FWT Library which is inspected monthly. Drum storage is inspected on a monthly basis. As part of the outdoor AST inspection, inspection of secondary containment is also conducted. An inspection checklist is completed for each individual site. An EHS Representative will perform a site visit to review the checklists at least annually and ensure inspections and documentation are being performed properly. A copy of inspection instructions and checklists are located in Appendices C, D, and E.

When a specific site receives the SPCC/PIPP, the owner/operator conducts a site-specific briefing of the plan. The regulatory requirements, inspection protocols, and spill response procedures are discussed in the briefing. Once site personnel are briefed on the plan, they sign and date an SPCC/PIPP personnel training log, or sign an attendance sheet indicating that they have been briefed.

There are written inspection guidelines for personnel at each individual site to follow while performing the inspection. After the inspection is completed, the checklist is placed in the department’s on-site SPCC/PIPP file, a copy sent to UM-Flint EHS department, and the records are maintained for three years.

4.2 Record Keeping

All records generated with this Plan (that is, inspection worksheets, and training records) will be maintained with the Plan for a minimum of 3 years. These records are filed on site in the on-site Plan or maintained electronically. The annual visit logs are located with UM-Flint EHS.
4.3 Integrity Testing

Based on 40 CFR 112.8(c) (6), integrity testing on bulk storage containers is required. An inventory of oil storage is included in the table section of this plan.

Integrity testing of ASTs, supports, foundations, and containment are performed via visual inspections. For ASTs with capacities greater than 1,100 gallons, additional integrity testing will be based on industry standards. Above ground storage tanks shall be subject to periodic integrity testing, using such techniques as hydrostatic testing, visual inspection, or a system of nondestructive shell thickness testing, as per manufacturer’s recommendations. Currently, UM-Flint does not have any ASTs that require additional integrity testing beyond the visual inspections since there are no ASTs that have capacities greater than 1,100 gallons.
5.0 Personnel Training

At a minimum, oil-handling personnel should be trained in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; applicable pollution control laws, rules, and regulations; general facility operations; and, the contents of the facility SPCC Plan.

Personnel should also be trained to designate a person at each applicable facility who is accountable for discharge prevention and who reports to facility management.

Personnel should be able to schedule and conduct discharge prevention briefings for your oil-handling personnel at least once a year to assure adequate understanding of the SPCC Plan for that facility. Such briefings must highlight and describe known discharges as described in §112.1(b) or failures, malfunctioning components, and any recently developed precautionary measures.

All appropriate personnel at the facility are trained in:

- The laws and regulations regarding spills, releases, and pollution control.
- The contents of the SPCC/PIPP.
- The operation and maintenance of equipment to prevent discharges.

The level of employee training depends on the person’s level of responsibility for spill prevention or control. Operations personnel with the day-to-day responsibility for spill prevention and response are given additional training. This includes exercises to complete the inspection checklists and thoroughly explain spill prevention and response activities. Supervisors will schedule, monitor and ensure that their employees participate in the annual SPCC/PIPP training sessions. Trainings may involve both classroom, briefings, and some online training.

Spill prevention and response training is conducted to the personnel designated as either responding to oil discharges or having the responsibility for working in and around areas where oil is stored, distributed, and used. Informal briefings are held periodically or distribution of fact sheets/training materials to assure adequate understanding of the SPCC/PIPP and to update employees on changes in the regulations, laws, or in-house procedures. Such briefings highlight and describe known spill events or failures, malfunctioning components and recently developed precautionary measures.

Departments will maintain training records with their on-site SPCC/PIPP in Appendix F. Copies of departmental training and briefings should be forwarded to EHS for their records.
6.0 Security

To assist in preventing a spill or release from being caused by accidental or unknown entry or vandalism, the following security measures are taken:

- UST and AST access is secured. Only authorized employees have access to tanks. Direct outward flow valves are locked in the closed position when non-operating or in standby.
- All connecting lines and piping disconnected from the container and blanked off when not in service or when in standby for more than 12 months.
- Adequate lighting for the detection of spills by both facility personnel and the general public.
- USTs are reinforced in areas of vehicular traffic.
- ASTs are protected in areas of vehicular traffic to prevent vehicle collision with tank.
- The transportation and ground areas handling or storing oil or polluting materials are surrounded by fencing that is kept locked during non-working hours.
- Buildings storing oil or polluting materials are kept locked during non-working hours.
7.0 Facility Improvements

The following table is designed to list improvements the facility plans to implement, as part of the facility SPCC/PIPP, to better prevent discharges of oil into the waters of the United States. Improvements can include best management practices, secondary containment, inspections, or training.

Facility Improvements

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal/replacement of three heating oil USTs adjacent to CEP</td>
<td>The USTs were removed in April 2006. The installation of three 30,000 gallon double walled USTs was completed September 2006.</td>
</tr>
<tr>
<td>Implement secondary containment for used kitchen grease or switch to smaller containers stored covered/indoors. Weekly inspections on grease until secondary containment is installed.</td>
<td>Fall 2008</td>
</tr>
<tr>
<td>Removal/replacement of four steam boilers in the CEP. The boilers were replaced with two new ones.</td>
<td>December 2013</td>
</tr>
<tr>
<td>Implement Online Training option for employees</td>
<td>January 2014</td>
</tr>
<tr>
<td>Generator Floor Sensors</td>
<td>March 2014</td>
</tr>
</tbody>
</table>

Amendments or updates to this SPCC/PIPP plan after the certification date listed in Section 1.3, should be described in the table below. Include the section that was amended or updated and a description of the amendment or update, the date the amendment or update was completed, and the signature of the person authorizing the amendment or update. A Professional Engineer must approve all significant amendments or updates.

Plan Amendments and Updates

<table>
<thead>
<tr>
<th>Sections Updated</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Removed Murchie UST.</td>
<td>June 2004</td>
</tr>
<tr>
<td>Table 1: Added ASTs at Central Energy Plant and Murchie.</td>
<td>2004</td>
</tr>
<tr>
<td>Table 1: Added diesel and gasoline ASTs with 2nd containment in Hubbard Compound and Murchie.</td>
<td>2006</td>
</tr>
<tr>
<td>Sections Updated</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>7.0 Facilities Improvements – CEP heating oil tanks removed/replaced with upgraded equipment</td>
<td>September 2006</td>
</tr>
<tr>
<td>7.0 Facilities Improvements – kitchen grease placed in smaller containers with secondary containment.</td>
<td>September 2008</td>
</tr>
<tr>
<td>Inspections forms updated</td>
<td>December 2007, January 2008</td>
</tr>
<tr>
<td>Plan was updated in various Sections</td>
<td>April 2009</td>
</tr>
<tr>
<td>New Facilities and Operations Director</td>
<td>November 2010</td>
</tr>
<tr>
<td>Revised Inspection form for FWT Library UST</td>
<td>October 2013</td>
</tr>
<tr>
<td>Added Inspection Forms</td>
<td>July 2014</td>
</tr>
<tr>
<td>Plan was updated in various Sections</td>
<td>July 2014</td>
</tr>
</tbody>
</table>
FIGURES

Figure 1 Facility Relative to the Surrounding Area Map
Figure 2 Facility Map
Figure 3 South Riverfront Campus Map
Figure 4 North Riverfront Campus Map
Figure 5 Central Energy Plant – First Floor
Figure 6 Central Energy Plant – Basement
TABLES

Table 1 Bulk Oil Storage Inventory
Table 2 Polluting Material Storage Inventory
APPENDICES

Appendix A Campus Emergency Response Plan (ERP)
Appendix B EHS Off-Campus Spill Notification Guide for EHS Manager
Appendix C CSPCC/PIPP Inspection Checklists
Appendix D SPCC/PIPP Inspection Guidelines
Appendix E UM-Flint Annual SPCC Site Visit Inspection Checklist
Appendix F SPCC/PIPP Training Records
Appendix G Resources
 • Environmental Update Training Materials
 • OSEH SPCC Plan Fact Sheet
 • SPCC Plan Secondary Containment and Catchment Guidance
 • US EPA SPCC Regulation - A Facility Owner/Operator’s Guide to Oil Pollution Prevention
 • MDEQ Part 5 Spillage of Oil and Polluting Materials
 • MDEQ Pollution Incident Prevention Plan (PIPP) Informational Packet