A1. How many 2-digit integers are there whose digits sum to 12?

A2. Let k be the number you receive. For what number n is $x + k$ a factor of $x^2 + (k+1)x + n$?

A3. Let k be the number you receive. Find the slope of the line through the points $(k+4, 7k+1)$ and $(3k+1, 2k^2+7)$.

A4. Let k be the number you receive. Multiplying out

$$(x - 2) (x - k + 1) (x + 2k)$$

gives

$$x^3 + bx^2 + cx + d$$

for numbers b, c, and d. Find b.

A5. Let k be the number you receive. Find the area of the region consisting of all points (x, y) with $0 \leq x \leq k$, $0 \leq y \leq k$, and $2x + y \geq k$.

1. 7
2. 7
3. 5
4. 4
5. 12
B1. Find the larger of the two roots of the quadratic $2x^2 - x - 15$.

B2. Let k be the number you receive. Find the area of the square with perimeter $4k - 4$.

B3. Let k be the number you receive. If $f(x + 1) = 3x - 5$ for all x, find $f(k)$.

B4. Let k be the number you receive. Find the length of the hypotenuse of a right triangle with legs of lengths $k - 1$ and $2k^{\frac{1}{2}}$.

B5. Let k be the number you receive. Let x and y satisfy the following two equations.

\[
\begin{align*}
y^2 &= x^2 + 2k \\
y &= x + 2
\end{align*}
\]

Find $x + y$.

1. 3
2. 4
3. 4
4. 5
5. \boxed{5}
C1. How many pairs of integers \(a\) and \(b\) with \(1 < a < b\) have product 96?

C2. Let \(k\) be the number you receive. Find the area of the triangle bounded by the lines \(x = 0\), \(y = 1\), and \(x + y = k\).

C3. Let \(k\) be the number you receive. Find the smaller solution \(x\) to \(|x - 2k| = k - 1\).

C4. Let \(k\) be the number you receive. Find the \(x\)-coordinate of the point of intersection of the following two lines.
\[
\begin{align*}
kx + y &= k^2 + 3 \\
x + y &= 4k
\end{align*}
\]

C5. Let \(k\) be the number you receive. For what number \(n\) do the points \((3, 7)\), \((k, 2k + 1)\) and \((k - 1, n)\) lie on a line?

1. 5 2. 8 3. 9 4. 6 5. 11
D1. How many prime numbers are factors of 165?

D2. Let k be the number you receive. Solve for x:

$$4^{3x} = 8^{2k}$$

D3. Let h be the number you receive from the front, and let k be the number you receive from the back. A right triangle with legs of lengths x and h has the same hypotenuse as a right triangle with legs of lengths $x + 1$ and k. Find x.

D4. Let k be the number you receive from the back. What is the remainder when $x^3 + x^2 + 9x + k$ is divided by $x + 2$?

D5. How many ways are there to arrange the letters in MATH?

1. 3
2. 3
3. [2]
4. 2
5. 24