A1. Find the slope of the line through the points (-2, -7) and (2, 1).

A2. Let k be the number you receive. Find the base of a rectangle whose perimeter is 20 and whose height is k more than its base.

A3. Let k be the number you receive. Find the x-intercept of the line of slope 2 through the point (4, k).

A4. Let k be the number you receive. Evaluate

$$\frac{1 + \frac{1}{k}}{1 - \frac{1}{k^2}}$$

A5. Let k be the number you receive. Find the y-intercept of the line that contains the point (k, k^2) and is perpendicular to the line through that point and the origin.

1. 2 2. 4 3. 2 4. 2 5. 5
B1. If the difference of two positive numbers is 5 and the difference of their squares 45, find their sum.

B2. Let \(k \) be the number you receive. Find the \(x \)-coordinate of the point where the lines \(2x + y = 0 \) and \(x - y = k \) intersect.

\[
\frac{2}{1 - \frac{1}{k}}
\]

B3. Let \(k \) be the number you receive. Evaluate \(1 + \)

B4. Let \(k \) be the number you receive. Find the larger of the two \(x \)-intercepts of the parabola \(y = k - (x - 2)^2 \).

B5. Let \(k \) be the number you receive. Find the area of a square with diagonal of length \(k \).

1. 9 2. 3 3. 4 4. 4 5. 8
C1. How many prime numbers are less than 20?

C2. Let k be the number you receive. Find the smaller of the two roots of the quadratic $2x^2 - 3kx + k^2$.

C3. Let k be the number you receive. Let $f(x) = x^2 + kx$ for all x. Solve for x: $f(x+1) = f(x) + 11$.

C4. Let k be the number you receive. Find the length of the hypotenuse of a right triangle with legs of lengths $k^2 - 1$ and $2k$.

C5. Let k be the number you receive. When a tree of height 35 ft. casts a shadow of length k ft., how many feet tall is a tree that casts a shadow of length $k + 8$ ft.?

1. 8 2. 4 3. 3 4. 10 5. 6
D1. How many positive integers less than 25 are multiples of 3 or 4 or both?

D2. Let k be the number you receive. If $8^x = 4^{k+3}$, find x.

D3. Let h be the number you receive from the front, and let k be the number you receive from the back. Find x if

\[
\frac{1}{h+k} + \frac{1}{k} = \frac{x}{h+k}
\]

D4. Let k be the number you receive. Find the larger of the two roots of

\[kx^2 - (k^2 + 1)x + k\]

D5. Let $a_1 = 0$ and $a_2 = 1$. If $a_n = 2a_{n-1} - a_{n-2}$ for $n \geq 3$, find a_6.

1. 12
2. 10
3. 4
4. 5
5. 5